
ERLANG
TIMER WHEELS

Jade Allen @avocadoSuperFan



Closing Walls and Ticking Clocks

◦Let’s talk about how weird time is
◦Fact or crap: time always advances.
◦Fact or crap: NTP is a thing, time is a 
solved problem.
◦What even is a leap second?



Love in the time of cholera
◦Distributed systems need reliable timers for all 
kinds of reasons
◦Coordination of state replication (linearization)
◦Failure recovery/retries
◦Failure detection
◦Traffic control algorithms



How can we implement timers?

◦Method 1: Direct access
◦Method 2: A list (possibly ordered by expiry)
◦Method 3: Ignore wall clock time and “tick” 
on an event.

What’s wrong with these implementations? 



But wait, we can do better!



Wheels in the sky emulator



A simple timer wheel



How does Erlang deal with time?
◦ Before OTP 18
◦ now()
◦ The weird and terrible Erlang time tuple {MegaSeconds, Seconds, Milliseconds}
◦ Terrible at dealing with OS level time changes

◦ OTP 18 and later (current release is OTP 26 – just released in May 2023)
◦ monotonic_time() (managed by the Erlang run-time because reasons)
◦ system_time()
◦ os:timestamp() (also system time without interpretation)
◦ Configurable ways to deal with underlying system time changes







🧐





A simple timer wheel, again







Say what now?



Even monotonic time?



THANKS!
Questions?


