ERLANG

TIMER WHEELS

Closing Walls and Ticking Clocks

oLet’s talk about how weird time is
oFact or crap: time always advances.
oFact or crap: NTP Is a thing, fime Is a
solved problem.
-What even is a leap seconde

Love In the time of cholera

o Distributed systems need reliable tfimers tor all
kinds of reasons
o Coordination of state replication (linearization)
o Failure recovery/retries
o Failure detection
o Traffic control algorithms

How can we implement fimerse

oMethod 1: Direct access
oMethod 2: A list (possibly ordered by expiry)

-Method 3: Ignore wall clock fime and “tick”™
on an event.

What's wrong with these implementations?

But walt, we can do better!
WHAT IF ITOLD YOU

} \

’
..
\

"
) A
-
3

)

Wheels In the sky emulator

Hashed and Hierarchical Timing Wheels: Data Structures
for the Efficient Implementation of a Timer Facility

George Varghese and Tony Lauck
Digital Equipment Corporation
Littleton, MA 01460

Abstract

Conventional algorithms to implement an Operating
System timer module take O(n) time to start or main-
tain a timer, where n is the number of outstanding
timers: this is expensive for large n. This paper be-
gins by exploring the relationship between timer algo-
rithms, time flow mechanisms used in discrete event
simulations, and sorting techniques. Next a timer
algorithm for small timer intervals is presented that
is similar to the timing wheel technique used in logic
simulators. By using a circular buffer or timing wheel,
it takes O(1) time to start, stop, and maintain timers
within the range of the wheel.

be detected by periodic checking (e.g. mem-
ory corruption) and such timers always expire.
Other failures can be only be inferred by the
lack of some positive action (e.g. message ac-
knowledgment) within a specified period. If
failures are infrequent these timers rarely ex-
pire.

Algorithms in which the notion of time or rel-
ative time is integral: Examples include algo-
rithms that control the rate of production of
some entity (process control, rate-based flow
control in communications), scheduling algo-
rithms, and algorithms to control packet life-
times in computer networks. These timers al-

A simple timer wheel

How does Erlang deal with time®e

o

Before OTP 18

o NOW()

o The weird and ferrible Erlang time tuple {MegaSeconds, Seconds, Milliseconds}
o Terrible at dealing with OS level time changes

OTP 18 and later (current release is OTP 26 — just released in May 2023)
monotonic_time() (managed by the Erlang run-tfime because reasons)
system_time()

os:timestamp() (also system time without interpretation)

Configurable ways to deal with underlying system time changes

o

(0]

(0]

(0]

(0]

apply after(Time, Module, Function, Arguments) ->
{ok, TRef} | {error, Reason}

Types

Time = time()
Module = module()
Function = atom()
Arguments = [term()]
TRef = tref ()

Reason = term()

Evaluates spawn (Module, Function, Arguments) after Time milliseconds.

Returns {ok, TRef} or {error, Reason}.

send_after(Time, Message) -> {ok, TRef} | {error, Reason}

send_after(Time, Destination, Message) ->
{ok, TRef} | {error, Reason}

Types
Time = time()
Destination =
pid() |
(RegName :: atom()) |
{RegName :: atom(), Node :: node()}
Message = term()

TRef = tref()
Reason = term()

send_after/3

Evaluates Destination ! Message after Time milliseconds. (Destination can be a
remote or local process identifier, an atom of a registered name or a tuple {RegName, Node}
for a registered name at another node.)

Returns {ok, TRef} or {error, Reason}.
See also the Timer Module section in the Efficiency Guide.
send_after/2

Same as send_after(Time, self(), Message).

Creating timers using erlang:send_after/3 and erlang:start_timer/3 is more efficient than using
the timers provided by this module. However, the timer module has been improved in OTP 25, making it
more efficient and less susceptible to being overloaded. See the Timer Module section in the
Efficiency Guide.

3.1 Timer Module © &
Creating timers using erlang:send_after/3 and erlang:start_timer/3, is more efficient than using the
timers provided by the timer module in STDLIB.

The timer module uses a separate process to manage the timers. Before OTP 25, this management overhead
was substantial and increasing with the number of timers, especially when they were short-lived, so the timer
server process could easily become overloaded and unresponsive. In OTP 25, the timer module was improved
by removing most of the management overhead and the resulting performance penalty. Still, the timer server
remains a single process, and it may at some point become a bottleneck of an application.

The functions in the timer module that do not manage timers (such as timer:tc/3 or timer:sleep/1), do
not call the timer-server process and are therefore harmless.

A simple timer wheel, again

B8 R B
o-m

R

| 4 A

#ifdef ERTS_TW_DEBUG

/*
* Soon wheel will handle about 1 seconds
* Later wheel will handle about 8 minutes
*/

define ERTS_TW_SOON_WHEEL_BITS 10

define ERTS_TW_LATER_WHEEL_BITS 10

#else

ifdef SMALL_MEMORY

/*
* Soon wheel will handle about 4 seconds
* Later wheel will handle about 2 hours and 19 minutes

*/
= define ERTS_TW_SOON_WHEEL_BITS 12
& define ERTS_TW_LATER_WHEEL_BITS 12
else
/*
* Soon wheel will handle about 16 seconds

* Later wheel will handle about 37 hours and 16 minutes
*/

define ERTS_TW_SOON_WHEEL_BITS 14

define ERTS_TW_LATER_WHEEL_BITS 14

endif

#endif

struct ErtsTimerWheel_ {
ErtsTWheelTimer *slots[1 /* At Once Slot */
+ ERTS_TW_SOON_WHEEL_SIZE /* Soon Wheel Slots x/
+ ERTS_TW_LATER_WHEEL_SIZE]; /* Later Wheel Slots */
ErtsTWheelTimer skkw;
Sint scnt[ERTS_TW_SCNT_SIZE];
Sint bump_scnt [ERTS_TW_SCNT_SIZE];
ErtsMonotonicTime pos;
Uint nto;
struct {
Uint nto;
} at_once;
struct {
ErtsMonotonicTime min_tpos;
Uint nto;
} soon;
struct {
ErtsMonotonicTime min_tpos;
int min_tpos_slot;
ErtsMonotonicTime pos;
Uint nto;
} later;
int yield_slot;

int yield_slots_left;

ErtsTWheelTimer sentinel;

int true_next_timeout_time;
ErtsMonotonicTime next_timeout_pos;
ErtsMonotonicTime next_timeout_time;

Say what nowe

Linux versions prior to 2.6.33 have a
known bug that sometimes cause the NTP
adjusted monotonic clock to take small
steps backwards. Use raw monotonic clock
if it is present; otherwise, fall back
on locked verification of values.

init_resp—>have_corrected_os_monotonic_time =

Even monotonic fime?¢

Maximum drift of the 0S monotonic clock expected.

We use 1 milli second per second. If the monotonic
clock drifts more than this we will fail to adjust for

drift, and error correction will kick in instead.
If it is larger than this, one could argue that the
primitive is to poor to be used...

#define ERTS_MAX_MONOTONIC_DRIFT ERTS_MSEC_TO_MONOTONIC(1)

